Simulating the Mid-Pliocene Warm Period: how similar are the models?
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The mid-Pliocene Warm Period (MPWP, ca. 3.3 - 3 million years ago) provides an unparalleled opportunity to examine the long term response of the Earth System to elevated greenhouse gas concentrations. The MPWP has become an important target for palaeoclimate modelling, with a
large number of studies published during the last decade. However, there has been no attempt to assess the degree of model dependency of the results obtained. Here we present a comparison of mid-Pliocene climatologies produced by the Goddard Institute for Space Studies (GISS),
Hadley Centre for Climate Prediction and Research and National Center for Atmospheric Research (NCAR) atmosphere-only General Circulation Models (GCMAM3, HadAM3 and CAM3-CLM). Aterrestrial data/model comparison was made using the BIOME 4 model and a new data set of
Piacenzian Stage land cover (Salzmann et al., 2008), combined with the use of Kappa statistics. The results indicate that the HadAM3 and CAM3-CLM predicted biomes provide a closer fit to proxy data in the mid to high-latitudes, however, GCMAMS3 predicted biomes provide the closest fit
to proxy data inthe tropics. This study Is a contribution to the newly established Pliocene Climate Modelling Intercomparison Project (Plio-MIP), which is part if the Palaeoclimate Modelling Intercomparison Project (PMIP).
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