USGS - science for a changing world

U.S. Geological Survey

Maps, Imagery, and Publications Hazards Newsroom Education Jobs Partnerships Library About USGS Social Media


PlioMIP2 Publication Plan

Guidance for authors

PlioMIP2 Publications

Reduced El Nino variability in the mid-Pliocene according to the PlioMIP2 ensemble. Oldeman et al. CP 2021. https://doi.org/10.5194/cp-17-2427-2021

Warm mid-Pliocene conditions without high climate sensitivity: the CCSM4-Utrecht (CESM 1.0.5) contribution to the PlioMIP2. Baatsen et al. CPD. 2021. https://doi.org/10.5194/cp-2021-140

Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble. Berntell et al. CP 2021. https://doi.org/10.5194/cp-17-1777-2021

Evaluating the large-scale hydrological cycle response within the PlioMIP2 ensemble. Han et al. CPD 2021. https://doi.org/10.5194/cp-2021-72

Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2. Zhang et al. CP 2021. https://doi.org/10.5194/cp-17-529-2021

Evaluation of Arctic warming in mid-Pliocene climate simulations. de Nooijer et al. CP 2020. https://doi.org/10.5194/cp-16-2325-2020

Contribution of the coupled atmosphere-ocean-sea ice-vegetation model COSMOS to the PlioMIP2. Stepanek et al. CP 2020. https://doi.org/10.5194/cp-16-2275-2020

The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Haywood et al. CP. 2020. https://doi.org/10.5194/cp-16-2095-2020

Lessons from a high-CO2 world: an ocean view from ~3 million years ago. PLIOVAR. CP 2020. https://doi.org/10.5194/cp-16-1599-2020

Sensitivity of mid-Pliocene climate to changes in orbital forcing and PlioMIP's boundary conditions. Samakinwa et al. CP 2020. https://doi.org/10.5194/cp-16-1643-2020

Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m). Wing-Le Chan and Ayako Abe-Ouchi. CP 2020. https://doi.org/10.5194/cp-16-1523-2020

PlioMIP2 simulations with NorESM-L and NorESM1-F. Li et al. CP 2020. https://doi.org/10.5194/cp-16-183-2020

The mid-Piacenzian of the North Atlantic Ocean. Dowsett et al. Stratigraphy 2019 https://doi.org/10.29041/strat.16.3.119-144

Modeling a modern-like pCO2 warm period (Marine Isotope Stage KM5c) with two versions of an Institut Pierre Simon Laplace atmosphere-ocean coupled general circulation model. Tan et al. CP 2020. https://doi.org/10.5194/cp-16-1-2020

Simulation of the mid-Pliocene Warm Period using HadGEM3: Experimental design and results from model-model and model-data comparison. Williams et al. CP. 2021. https://doi.org/10.5194/cp-17-2139-2021

Drier tropical and subtropical Southern Hemisphere in the mid-Pliocene Warm Period. Pontes et al. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-68884-5

Northward ITCZ shift drives reduced ENSO activity in the Mid-Pliocene Warm Period. Pontes et al. Nature Portfolio Journal 2021. https://doi.org/10.21203/rs.3.rs-402220/v1

Community sourced mid-Piacenzian sea surface temperature (SST) data. Foley, K. and Dowsett, H. U.S. Geological Survey, 2019. https://doi.org/10.5066/P9YP3DTV

Increased Climate Response and Earth System Sensitivity From CCSM4 to CESM2 in Mid-Pliocene Simulations. Feng et al. J. Adv. Model. Earth Sy., 12, e2019MS002033, 2020. https://doi.org/10.1029/2019MS002033

Multi-variate factorisation of numerical simulations. Lunt et al. GMD. 2021. https://doi.org/10.5194/gmd-14-4307-2021

The Yorktown Formation: Improved Stratigraphy, Chronology and Paleoclimate Interpretations from the U.S. Mid-Atlantic Coastal Plain. Dowsett et al. Geosciences. 2021 https://doi.org/10.3390/geosciences11120486

The Warm Winter Paradox in the Pliocene High Latitudes. Tindall et al. EPSL (in-prep).

Proxy records-based constraint determines dramatic loss of near-surface permafrost during the Mid-Pliocene Warm Period. Guo et al. Nature Climate Change (in-prep).

Past terrestrial hydroclimate sensitivity controlled by Earth System Feedbacks. Feng et al. Nature Comms (in-revision).

Plio-Pleistocene paleoclimate forecasts alpine permafrost would account for a quarter of carbon release. Cheng et al. Nature Comms (in-revision). Contribution of sea ice albedo and insulation effects to Arctic amplification in the EC-Earth Pliocene simulation
Jianqiu Zheng, Qiong Zhang, Qiang Li, Qiang Zhang, and Ming Cai Clim. Past, 15, 291-305, https://doi.org/10.5194/cp-15-291-2019, 2019

The HadCM3 contribution to PlioMIP Phase 2 Part 1: Core and Tier 1 experiments
Stephen J. Hunter, Alan M. Haywood, Aisling M. Dolan, and Julia C. Tindall Clim. Past Discuss., https://doi.org/10.5194/cp-2018-180, 2019

On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures
Deepak Chandan and W. Richard Peltier Clim. Past, 14, 825-856, https://doi.org/10.5194/cp-14-825-2018, 2018

Regional and global climate for the mid-Pliocene using the University of Toronto version of CCSM4 and PlioMIP2 boundary conditions
Deepak Chandan and W. Richard Peltier Clim. Past, 13, 919-942, https://doi.org/10.5194/cp-13-919-2017, 2017

Sensitivity of Pliocene climate simulations in MRI-CGCM2.3 to respective boundary conditions
Youichi Kamae, Kohei Yoshida, and Hiroaki Ueda Clim. Past, 12, 1619-1634, https://doi.org/10.5194/cp-12-1619-2016, 2016

The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood Clim. Past, 12, 1519-1538, https://doi.org/10.5194/cp-12-1519-2016, 2016

The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design
Alan M. Haywood, Harry J. Dowsett, Aisling M. Dolan, David Rowley, Ayako Abe-Ouchi, Bette Otto-Bliesner, Mark A. Chandler, Stephen J. Hunter, Daniel J. Lunt, Matthew Pound, and Ulrich Salzmann Clim. Past, 12, 663-675, https://doi.org/10.5194/cp-12-663-2016, 2016

Late Pliocene lakes and soils: A global data set for the analysis of climate feedbacks in a warmer world
Matthew J. Pound, Ulrich Salzmann, Julia Tindall, Steven J. Pickering, Alan M. Haywood, Harry J. Dowsett. Climate of the Past, 10, pp.167-180. doi: 10.5194/cp-10-167-2014 , 2014

Assessing orbitally-forced interglacial climate variability during the mid-Pliocene Warm Period
Caroline L. Prescott, Alan M. Haywood, Aisling M. Dolan, Steven J. Hunter, James O. Pope and Steven J. Pickering. Earth and Planetary Science Letters 400(0): 261-271. doi: 10.1016/j.epsl.2014.05.030 , 2014

The PRISM (Pliocene Palaeoclimate) reconstruction: Time for a paradigm shift
Harry Dowsett, Marci M. Robinson, Danielle K. Stoll, Kevin. M. Foley, A. L. A. Johnson, M. Williams and C. R. Riesselman. Philosophical Transactions of the Royal Society 371: 1-24. , 2013

On the identification of a Pliocene time slice for data-model comparison
Haywood, A.M., Dolan A.M., Pickering S.J., Dowsett H.J., McClymont, E.L., Prescott, C.L., Salzmann U., Hill D.J., Hunter S.J.; Lunt D.J., Pope J.O., Valdes P.J. Philos Trans A Math Phys Eng Sci, 371, pp.20120515. doi: 10.1098/rsta.2012.0515, 2013


To receive announcements about PlioMIP2 activities please e-mail your name and affiliation.



Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: https://geology.er.usgs.gov/egpsc/prism/7.1_pliomip2_pubs.html
Page Contact Information: PRISM Web
Page Last Modified: Monday, December 6, 2021